
















similar, but different subsets of proteins were linked to each
functional activity. For example, cholesterol efflux activity was
detected in multiple peaks across the fractions, indicating that

cholesterol efflux is related to more than one subspecies, and
those multiple PL species may coordinate with each other to
promote cholesterol efflux. In an attempt to identify subspe-

FIG. 6. Inhibition of LDL oxidation by
gel filtration fractionated plasma. A,
Plasma fractions (50 �l) were incubated
with LDL and AAPH to initiate lipid peroxi-
dation. Percent inhibition of LDL oxidation
was calculated using the propagation rate
(PR) in the presence of each plasma frac-
tion relative to PR of LDL only. B, Individ-
ual components of the total oxidation
curve were identified using PeakFit. Three
peaks were identified that likely contribute
to the entire range of antioxidation activity
(peak 1, closed circles; peak 2, open cir-
cles; peak 3, closed triangles, and the
sum of all peaks, open triangle). The r2

value for the peak fit was 0.98.

FIG. 7. Correlation of antioxidative activity with total PL, cholesterol or protein content of fractions. Scatterplots showing a relatively
strong correlation with total protein content of fractions (r 
 0.746, p � 0.0005) (C), but the lack of correlation of PL (A) or CH content (B) of
fractions with antioxidative capacity of plasma fractions, (PCC of r 
 �0.271 (PL) and �0.0243 (CH), and p 
 n.s.).

TABLE III
Correlation of antioxidant activity with MS spectral counts

Oxidation peak 1 Oxidation peak 2 Oxidation peak 3

r p r p r p

fibrinogen � chain 0.986 8.32E-14 Ig gamma-1 chain C region 0.975 7.71E-12 �-1-antitrypsin 0.934 1.43E-08
fibrinogen � chain 0.976 5.26E-12 Ig kappa chain C region 0.973 1.37E-11 albumin 0.934 1.47E-08
fibrinogen � chain 0.972 1.91E-11 apolipoprotein A-II 0.958 3.93E-10 serotransferrin 0.918 7.98E-08
�2-macroglobulin 0.905 2.57E-07 serum amyloid P 0.949 2.01E-09 angiotensinogen 0.890 7.4E-07
fibronectin 0.726 0.0006 inter � trypsin inhibitor 4 0.916 9.41E-08 antithrombin-III 0.889 7.98E-07
apolipoprotein B 0.605 0.0078 complement C3 0.876 1.91E-06 transthyretin 0.883 1.21E-06
IGHM 0.557 0.0164 apolipoprotein A-I 0.832 1.89E-05 apolipoprotein H 0.873 2.23E-06

apolipoprotein C-I 0.804 5.86E-05 gelsolin 0.835 1.62E-05
apolipoprotein J 0.701 0.0012 �-2-HS-glycoprotein 0.813 4.07E-05
ceruloplasmin 0.604 0.0080 plasminogen 0.791 9.26E-05
complement C2 0.560 0.0157 �-1-acid glycoprotein 1 0.766 0.0002
paraoxonase 1 0.539 0.0210 �-1-acid glycoprotein 2 0.740 0.0004
Ptdlns-glycan-specific

phospholipase D
0.501 0.0342 hemopexin 0.734 0.0005

�-1-antichymotrypsin 0.650 0.0035
complement C9 0.599 0.0086
�-1B-glycoprotein 0.576 0.0123
vitamin D binding protein 0.567 0.0140
apolipoprotein A-IV 0.564 0.0147
�-2-antiplasmin 0.556 0.0167
vitronectin 0.548 0.0184
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cies that may be related to cholesterol efflux, we analyzed the
top proteins whose distribution across each efflux peak were
most highly correlated with cholesterol efflux activity. In terms
of individual proteins, we found the top correlated proteins

consist of diverse functional categories including lipoproteins
traditionally involved with lipid metabolism, immunoglobulins,
proteins associated with the alternative complement cascade
and innate immunity as well as many proteins associated with
the clotting cascade. The lipoproteins most commonly asso-
ciated with cholesterol efflux were identified in peak 2 (HDL
range) and include the most abundant and central structural
apolipoproteins in HDL, apoA-I and apoA-II. Other lipopro-
teins with high correlations in peak 2 include apoC-1 and
apoJ (clusterin). Each of these apolipoproteins have previ-
ously been shown to have the ability to efflux cholesterol from
cells (46–49). Besides these apolipoproteins well known for
their efflux capacity, multiple immunoglobulins and various
components of the alternative complement pathway, includ-
ing complement C3, C5, C6 and C7 were found to be highly
correlated with efflux activity in peak 2, along with proteins of
the innate immune response, serum amyloid P and inter-�-
trypsin inhibitor H4. In the LDL size range fractions, it appears
that an apoB containing particle is most highly correlated with
efflux activity. These studies utilized radio-labeled free cho-
lesterol to specifically measure cholesterol efflux in one direc-
tion, i.e. from the cell to the lipoproteins. It has been shown
that the net mass transfer of cholesterol between LDL and
cells results in a net influx of cholesterol mass to the cell (50).
Nevertheless, our work clearly shows that cellular cholesterol
can end up in LDL populations, suggesting that it participates
in cellular cholesterol homeostasis in more ways than simple
cholesterol loading. Other proteins found to be highly corre-
lated with efflux activity in peaks 1 and 3 include multiple
chains of fibrinogen in peak 1 and anti-thrombin 3, �-1 anti-
trypsin and albumin in peak 3. Many of these proteins have
well established functions in regulating the clotting cascade
(51). However, it is unclear whether they contribute directly to
cholesterol efflux, or if they are cargo proteins on lipoprotein
particles that have efflux capacity because of the presence of
apoA-I, because it is well established that minimally lipidated
apoA-I is the primary mediator of ABCA1 dependent choles-
terol efflux (52, 53). Interestingly, we also found albumin to be
highly correlated with efflux activity in peak 3. Consistent with
our findings, multiple studies have previously shown that al-
bumin has the capacity to accept cholesterol from cells (54,
55). Each of these highly correlated proteins were also de-
tected in our previous studies (12, 22), which analyzed only
phospholipid bound proteins, suggesting that our highly cor-
related proteins are lipid bound.

Inhibition of LDL oxidation is another potentially important
atheroprotective function of HDL. Similar to cholesterol efflux
activity, antioxidation function is clearly associated with mul-
tiple subspecies in multiple peaks of activity across PL con-
taining fractions. Indeed, there have been many studies show-
ing a variety of antioxidants present in plasma. These include
both small molecules, such as ascorbate, urate and vitamin E,
as well as proteins, such as paraoxonase, transferrin, and
albumin (41, 56–64) Although our study does not address the

FIG. 8. Overlay of top identified proteins that correlate with
inhibition of LDL oxidation. Distribution of MS spectral counts
across fractions are shown overlaid with the antioxidant activity of the
individual peaks for A, the first peak, [closed circle, fibrinogen � chain;
open circle, fibrinogen � chain; closed triangle, fibrinogen � chain;
open triangle, �-2-macroglobulin; gray circle, anti-oxidation activity]
B, the second peak [closed circle, IgHG1; open circle, IgKC; closed
triangle, apoA-II; open triangle, serum amyloid P; gray circle, antioxi-
dation activity] and C, the third peak of activity [closed circle, �-1-
antitrypsin; open circle, albumin; closed triangle, serotransferrin; open
triangle, angiotensinogen; gray circle, anti-oxidation activity].
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small molecules association with our antioxidation activity, we
did, however, find some interesting associations with specific
proteins. Proteomic analysis showed that the proteins most
highly correlated with antioxidative activity in peak 1 are fi-
brinogen �, � and � chains, the three subunits of fibrinogen
that come together to form the fibrinogen complex. Several
previous studies have detected fibrinogen associated with
lipoprotein particles (12, 15, 16, 65, 66), but it is unclear
whether the association is specific, or is simply because of the
abundance of the fibrinogen complex non-specifically sticking
to the lipoprotein particles. The fibrinogen complex has a
mass of �342 kDa, and its peak elution fraction is fraction 18
(Fig. 2). According to our calibration standards, proteins and
protein complexes with a MW of 340–417 kDa will elute in
fraction 18. Thus, using our sizing information, we are unable
to determine whether this fibrinogen complex is PL-associ-
ated or not. Nevertheless, fibrinogen has previously been
shown to have antioxidant activity (42, 43), which lends sup-
port to our findings that fibrinogen is highly correlated with
antioxidant activity in peak 1. Furthermore, correlation analy-
sis demonstrated that the fibrinogen complex (FibA, FibB and
FibG) was also highly correlated to antioxidant activity in peak
1 (Fig. 9B, r 
 0.98). In peak 2, apoA-I and apoA-II are both
highly correlated with antioxidant function. This effect may be
because of these proteins specifically, as these proteins have
both been shown to have antioxidative properties (67–71).
Additionally, apoA-I and apoA-II may be the structural pro-
teins of particularly effective subspecies of HDL containing
other antioxidant proteins. For instance, ceruloplasmin and
paraoxonase, both proteins with documented antioxidant
properties (60, 72, 73), were also found to be highly correlated
with antioxidation activity in peak 2. Other proteins in peak 2
that were highly correlated with antioxidation include comple-
ment components, as well as other inflammatory and immune
response proteins (immunoglobulins, serum amyloid P, in-
ter-�-trypsin inhibitor), indicating the potential overlap and
interaction of immune response and antioxidation pro-

cesses. Antioxidative activity in peak 3 is highly correlated
with albumin and serotransferrin, both proteins known to
have antioxidant properties (62, 74, 75). Other interesting
proteins found in peak 3 that had significant correlations
with antioxidant activity include both hemopexin and apoA-
IV, both of which have previously demonstrated antioxidant
activity (76, 77).

In our previous study (14), network analysis identified 30
potential subspecies that were supported by multiple lines of
evidence. Further analysis of the proteomic compositions of
our plasma fractions yielded support for the existence
of some previously identified potential HDL subspecies. For
instance, apoA-I, apoC-I and apoJ (clusterin) were found
together in peak 2, and were individually found to be sig-
nificantly correlated with both cholesterol efflux and antioxi-
dation activity (p � 0.05 after Bonferroni multiple correction).
We noted that these three proteins appear to comprise an
HDL subspecies as indicated in our previous study (14). The
existence of this HDL subspecies is supported by multiple
lines of evidence. First, multiple literature reports have docu-
mented an association between pairs of these proteins (41,
78–80). Second, recent data from our group has shown that
when apoA-I is knocked out in a mouse model, apoC-I was
also significantly decreased (28). Finally, using co-migrational
analysis (14), we were able to detect a shift in migration
of apoC-I as well as apoJ in a subject who was deficient in
apoA-I, implying that in the absence of apoA-I, apoC-I and
apoJ migrate with smaller particles than they would in the
presence of apoA-I. These data, taken together, support the
notion that apoA-I, apoC-I and apoJ may constitute a specific
subspecies of HDL. Similarly, a second previously identified
putative subspecies was found to be highly correlated with
cholesterol efflux activity, as well as antioxidation activity in
peak 2: apoA-I, apoA-II and apoC-I. Indeed, the apolipopro-
teins in each of these complexes have demonstrated efflux
potential; it will be interesting to determine whether a lipopro-
tein complex or complexes, containing these efflux-capable

FIG. 9. Correlation of previously
identified putative subspecies with
cholesterol efflux and antioxidant
activities in individual peaks. Pearson
correlation coefficients were calculated
for the identified subspecies as de-
scribed in Methods. A, PCC of each sub-
species compared with cholesterol ef-
flux activity. Black bars, apoA-I, apoA-II,
apoC-I; gray bars, apoA-I, apoC-I, apoJ.
B, PCC of each subspecies compared
with antioxidation activity. Black bars,
fibrinogen � chain, fibrinogen � chain,
and fibrinogen � chain; light gray bars,
apoA-I, apoA-II, and apoC-I; dark gray
bars, apoA-I, apoC-I and apoJ.
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proteins, will act synergistically to enhance cholesterol efflux
compared with each protein on its own. Because each of
these subspecies is highly correlated with both cholesterol
efflux and antioxidant activity, and because many of these
exchangeable lipoproteins are capable of performing similar
functions, it is difficult to ascertain the importance of one
subspecies compared with another in carrying out each spe-
cific function. The presence of additional proteins on these
subspecies may account for differences in functional activi-
ties. Regardless, this data supports our hypothesis that dis-
tinct HDL subspecies may be responsible for various biolog-
ical functions related to CVD.

Although our results suggest multiple proteins/subspecies
are associated with cholesterol efflux and antioxidation func-
tions, we caution that both efflux and antioxidation associated
proteins were derived from numerical correlation analysis. It is
difficult to know if the correlated proteins are causative or
simply associations. However, correlations between the pro-
teins and the two functions are very strong and these candi-
dates are actively being studied through interventional exper-
imental approaches in our laboratory. This work is among the
first to go beyond individual proteins and link putative HDL
subspecies to specific functions. Further work will be needed
to confirm the existence of specific subspecies and their
direct role in a specific HDL function. However, our data
suggest that certain plasma proteins may serve as better
biomarkers than HDL-C for CVD risk assessment, especially
when it comes to precision medicine; specific functional
evaluation (e.g. antioxidation and cholesterol efflux activi-
ties) may provide richer information than general disease
risk assessment.
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